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Mathematical modeling of pedestrian motion: frameworks

Microscopic

individual agents
ODEs system

many parameters

low and high densities

comp. cost ~ ped. number.

Macroscopic

continuous fluid
PDEs

few parameters
very high densities

analytical theory

comp. cost ~ domain size
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Macroscopic models

Mass conservation

o Pedestrians as "thinking fluid"*
o Averaged quantities: Orp + divk (p?) = 0

o p(t,x) pedestrians density p(0,%) = po(x)
e ¥(t,x) mean velocity

forx e QCR2 t>0

1R.L. Hughes, Transp. Res. B, 2002
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Macroscopic models

Mass conservation
o Pedestrians as "thinking fluid"*

Orp + divk (p?) = 0
p(0,x) = po(x)
forx cQCR? t>0

o Averaged quantities:

e p(t,x) pedestrians density
e ¥(t,x) mean velocity

o 1st order models: velocity given by a phenomenological
speed-density relation U =V (p)v

@ 2nd order models: velocity given by a momentum balance equation

1R.L. Hughes, Transp. Res. B, 2002
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Macroscopic models

Mass conservation

o Pedestrians as "thinking fluid"*
o Averaged quantities: {(‘% p + divx(p?) =0

e p(t,x) pedestrians density p(0,%) = po(x)
e ¥(t,x) mean velocity

forx e QCR2 t>0

Two classes

o 1st order models: velocity given by a phenomenological
speed-density relation U =V (p)v

@ 2nd order models: velocity given by a momentum balance equation

o Density must stay non-negative and bounded: 0 < p(t,x) < pmax
o Different from fluid dynamics:

o preferred direction
e no conservation of momentum / energy
o n < 6-10%3

1R.L. Hughes, Transp. Res. B, 2002
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Continuum hypothesis

n < 6-10% but ...

Brown University, Main Green, 08.21.2017
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Macroscopic models

Speed function V (p):

o decreasing function wrt density

@ V(0) = Umax free flow

V(pmax) >~ 0 congestion

Numerical tests

Speed-density relation

Examples:
X L CEAN) —1P) = V2 1P/p)
16 V) = e ) = Vg 8P
12 AN =
] AN S 2N
> AN a N
08 . AN
A 1 h
0.4 o
% 2 . § 2 § 7
P 3
speed V(p)
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Desired direction of motion /i

Pedestrians:
@ seek the shortest route to destination T Vx¢
o try to avoid high density regions |VX¢|
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Desired direction of motion /i

Pedestrians:
o seek the shortest route to destination - Vx¢
o try to avoid high density regions |Vx¢’

The potential ¢ : Q@ — R is given by the Eikonal equation

[Vxo| = C(t,x,p) inQ
o(t,x) =0 for x € Toutflow

where C' = C(t,x, p) > 0 is the running cost

= the solution ¢(t, x) represents the weighted distance of the position x
from the target I'outfiow
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Eikonal equation: level set curves for |Vxo| = 1

In an empty space: potential is proportional to distance to destination
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The fastest route ...

. needs not to be the shortest!
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First order models

o Hughes' model

_Vx¢ _
egl St V=55

U=

e minimize travel time avoiding high densities
o CRITICISM: instantaneous global information on entire domain

1R.L. Hughes, Transp. Res. B, 2002
2Y. Xia, S.C. Wong and C.-W. Shu, Physical Review E, 2009
3R.M. Colombo, Garavello and M. Lécureux-Mercier, M3AS, 2012
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First order models
o Hughes' model

Vxd 1

B A 7 )

U=

e minimize travel time avoiding high densities
o CRITICISM: instantaneous global information on entire domain

e Dynamic model with memory effect?

Vx(¢ +wD) 1 1 .
T Va(é+wD)| st |Vxo| = s’ D(p) = w(p) + Bp~  discomfort

v =

e minimize travel time based on knowledge of the walking domain
o temper the behavior locally to avoid high densities

1R.L. Hughes, Transp. Res. B, 2002
2Y. Xia, S.C. Wong and C.-W. Shu, Physical Review E, 2009
3R.M. Colombo, Garavello and M. Lécureux-Mercier, M3AS, 2012
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First order models
o Hughes’ model

Vx¢ 1
— s.t. |Vxo| =
Vx| V9l

U=

V(p)

e minimize travel time avoiding high densities
o CRITICISM: instantaneous global information on entire domain

e Dynamic model with memory effect?

Vx(¢ +wD) 1 1 .
T Va(é+wD)| st |Vxo| = s’ D(p) = w(p) + Bp~  discomfort

v =

e minimize travel time based on knowledge of the walking domain
o temper the behavior locally to avoid high densities

@ Non-local flow:?

v=V(p) | V- EM with o= Vxd

— =Pt V| = 1
Vx
1+ [V (p ) V9]

1R.L. Hughes, Transp. Res. B, 2002
2Y. Xia, S.C. Wong and C.-W. Shu, Physical Review E, 2009
3R.M. Colombo, Garavello and M. Lécureux-Mercier, M3AS, 2012
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Second order model

Momentum balance equation*®

V(p)v — v
-

9 (pv) + divx(pU ® ¥) + V< P(p) = p

where
2
e Vip) = ’l}maxe_a(/’max)
o [Vxo| =1/V(p)
@ P(p) =pop”, po >0, v > 1 internal pressure

@ 7 response time

4Payne-Whitham, 1971
5Y.Q. Jiang, P. Zhang, S.C. Wong and R.X. Liu, Physica A, 2010
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Question

Can macroscopic models reproduce

characteristic features of crowd behavior?
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Outline of the talk

© Numerical tests
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Numerical schemes used

o Space meshes: unstructured triangular / cartesian

Eikonal equation: linear, finite element solver® / fast-sweeping

First order models: Lax-Friedrichs

Second order models: explicit time integration with
advection-reaction splitting (HLL scheme)

Non-local models: dimensional splitting Lax-Friedrichs

8[Bornemann-Rasch, 2006]
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Corridor evacuation with two exits

Configuration at t =0

Parameters choice:

po = 3ped/m? initial density

Pmax = 10ped/ m? maximal density

Umax = 2m/s desired speed

7 = 0.61s relaxation time

po = 0.005ped' ~Ym?>T7 /s pressure coefficient

~ = 2 adiabatic exponent

a = 7.5 density-speed coefficient

€ = 0.8 correction coefficient

n=[1-(z/r)**[1 — (y/r)?]® convolution kernel, with r = 15m
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Corridor evacuation with two exits

t = 20s

Vx| = 1/v(p) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Corridor evacuation with two exits

t = 40s

Vx| = 1/v(p) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Corridor evacuation with two exits

t = 60s

[Vxo| = 1/v(p) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Corridor evacuation with two exits

t = 80s

[Vx¢| = 1/v(p) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Parameters choice:

Numerical tests Rigorous results

Room evacuation with obstacle

[+] 5 10 12

Configuration at t =0

po = 3ped/m? initial density

Pmax = 6ped/m? maximal density

Umax = 2m/s desired speed

7 = 0.61s relaxation time

Ppo = 0.005ped177mQ+7/s2 pressure coefficient

v = 2 adiabatic exponent

a = 7.5 density-speed coefficient

€ = 0.8 correction coefficient

n=[1- (z/r)**[1 — (y/r)?]® convolution kernel, with r = 1.5m
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Room evacuation with obstacle
t=2s

|Vxo| = 1/v(p) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Room evacuation with obstacle
t=>5s

[Vxo| = 1/v(p) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Room evacuation with obstacle
t = 8s

|Vxo| = 1/v(p) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Room evacuation with obstacle
t=11s

[Vxd| = 1/v(p) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Rigorous results

Effect of the obstacle on the outflow

Time evolution of the total mass of pedestrians inside the room

20- —simple model
---memory sffect model
o
#30-
H
£
£ 20-
10-
0 4 8 12 16
s
first order
Evolution of total mass of pedestrian
50,
= sCol
~—wCol
40
N
" 30 “
2 .
3
8 .
20| \,
\ o
\\ \\
10|
0 5 10 15 20 25 30
non-local
P. Goatin (Inria)

Macroscopic models

Total mase

enp tbom
room winobsiade

second order
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Second order model: stop-and-go waves

t=90 t=100 t=110 t=120
P(p) = 0.0050%, Vmax = 2, Pmax = T

Density profiles at x = 64

Fig. Time evolution of density profile at © = 64 (left exit)
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Second order model: dependence on py

P(p) = pop”: total evacuation time optimal for po ~ 0.5

Total evacuation time T
evac

Rigorous results

340 T T

3001

260

220

With Vmax = 2m/s, pmax = 7ped/m2
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Second order model: dependence on vpax

Total evacuation time

Total evacuation time T =[2 M@ dt as a function of v
ovac =0 '

1000 T T T T

ax

600

T
evac

Social force models’ show a minimum for vmax ~ 1.4 m/s
— faster-is-slower effect®
Accounting for inter-pedestrian friction?

D. Helbing, I. Farkas and T. Vicsek, Nature, 2000
8D.R. Parisi and C.O. Dorso, Physica A, 2007
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Second order model: dependence on vpax

Total mass evolution

25 T T
M(t) —Vmax=0.5
Vi = 1.0
20+ = =15
Y =20
mex
—v =30
mex
15 —--Vmﬂx=4.0,
— =V =6.0
max
101 =
5L B
0 1 1
[¢] 50 60 70

with pmax = Tped/m?, v = 2, po = 0.005
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Evacuation optimization: Braess' paradox® ?

Problem: clogging at exit

Can obstacles reduce the evacuation time?

9Braess, D. Uber ein Paradozon aus der Verkehrsplanung, Unternehmensforschung,
12, pp. 258-268 (1968)
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Evacuation optimization: Braess' paradox?

Time evolution of the total mass of pedestrians inside the room

40

P(p) = 0.001p?

40
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Non-local model: lane formation!®

Two groups of pedestrians moving in opposite directions

1 2
8, U' + div [ crU'(1 = U? 1—e—2 2 Vgl(z,y) —eq—L ) | =0,
¢ (1 ( )| ( 1 ﬁ_HUleQ) (z,y) —€2 o

2 1
8, U? + div | caU?(1 — U? 1— e —L Vi (z,y) —ep —L 1 =0.
¢ (2 ( )| ( 1 /71+HU2*NH2) (z,y) —€2 T

where

c1=co =4 crowding factor
€1 =0.3, e2=0.7,

can be derived as mean-field and hydrodynamic limit of microscopic model
[Géttlich-Klar-Tiwari, JEM 2015]

10R.M. Colombo and M. Mercier, Acta Mathematica Scientia, 2011
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Lane formation in bidirectional flows

[Aggarwal-Colombo-Goatin, SINUM 2015; Aggarwal-Goatin, BBMS 2016]
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Lane formation in crossing flows

[Aggarwal-Colombo-Goatin, SINUM 2015; Aggarwal-Goatin, BBMS 2016]
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Outline of the talk

© Some rigorous results
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The 1D case: statement of the problem

We consider the initial-boundary value problem

—(p—p 2= =
|| = <(p)
with initial density p(0,-) = po € BV(]0, 1])

and absorbing boundary conditions
p(t,—1)=p(t,1) =0 (weak sense)
(b(tv*l) (b(tvl) =0

zeQ=]-1,1,¢t>0
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The 1D case: statement of the problem

We consider the initial-boundary value problem

_ AN
g (p(l p)w)x U sea=]-11[ >0
|pa| = c(p)

with initial density p(0,-) = po € BV(]0, 1[)
and absorbing boundary conditions

p(t,—1)=p(t,1) =0 (weak sense)
(;b(tv*l) ¢(t’1) =0

General cost function c: [0, 1] — [1,+oo[ smooth s.t. ¢(0) =1 and ¢'(p) > 0

(e.g. c(p) = 1/v(p))
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The 1D case: statement of the problem

The problem can be rewritten as

po— (sen(e —£(0) f(p) =0

x

where the turning point is given by

£(t) 1
/ e (plty)) dy = / ¢ (ot ) dy
3

-1 (t)
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The 1D case: statement of the problem

The problem can be rewritten as

pi— (sen(e = £(1) f(p)) =0

x

where the turning point is given by

£(t) 1
/ ¢ (plty)) dy = / ¢ (ot ) dy

-1 £(t)

— the discontinuity point & = £(¢) is not fixed a priori,
but depends non-locally on p
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The 1D case: available results

o existence and uniqueness of Kruzkov’s solutions for an elliptic
regularization of the eikonal equation and ¢ = 1/v
[DiFrancesco-Markowich-Pietschmann-Wolfram, JDE 2011]

e Riemann solver at the turning point for ¢ = 1/v
[Amadori-DiFrancesco, Acta Math. Sci. B 2012]

e entropy condition and maximum principle
[EIKhatib-Goatin-Rosini, ZAMP 2012]

e wave-front tracking algorithm and convergence of finite volume
schemes
[Goatin-Mimault, SISC 2013]

e existence for data with small L* and TV norms and ¢ = 1/v
[Amadori-Goatin-Rosini, JMAA 2013]

@ local version
[Carrillo-Martin-Wolfram, M3AS 2016]

@ extension to graphs
[Camilli-Festa-Tozza, NHM 2017]
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The 1D case: entropy condition

Definition: entropy weak solution (EIKhatib-Goatin-Rosini, 2012)

p € C° (RT;L*(Q)) NBV (RT x ©;[0,1]) s.t. for all k € [0,1] and
1 € CP(R x Q;RY):

+oo 1 1
os/o /71 (|p — k| + ®(t, z, p, k)ibs) dx di+ [1 lpo(z) — k| (0, ) da
+ sgn(k) /Om (f (p(t, 1)) — f(k)) (¢, 1) dt

+oo
+%mml (F (plts—10)) — F(k)) (t, 1) dt

+oo
+2A )0 (1, (1) .

where (b(t,.’L', Ps k) = Sgn(p - k) (F(t7x7p) - F(t,.’l?, k))
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The 1D case: maximum principle

Proposition (ElKhatib-Goatin-Rosini, 2012)

Let p € C° (R*;BV(Q) NL*(Q)) be an entropy weak solution. Then

0 < p(t,2) < [lpollre ()

Characteristic speeds satisfy

et (@) &), it p~ (1) < p™ (1),
—f (P~ (1) Z &), if p~ (1) > p*(2).
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The 1D case: wave-front tracking [Goatin-Mimault, SISC 2013]

Riemann-type initial data:

2.

3
5
2
~ 15
1
5

0.

A

Ap:2710

-05

Code freely available at:
http://www-sop.inria.fr/members/Paola.Goatin/wft.html
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The 1D case: wave-front tracking [Goatin-Mimault, SISC 2013]

Density profile at ¢t = 0.8:

1 1
03| 09
08| 08
07 07
0| .06

205 205

a -]

04 04
03| 03
02) 02
ot 0.1
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The 1D case: numerical convergence of WFT [Goatin-Mimault, SISC 2013]

v | Ap €

51 27°% | 4.280e — 2
6| 276 | 2.164e —2
7

8

277 | 6.141e — 3
278 | 5.048¢ — 3

9272 | 1.755¢ — 3
10 | 2719 | 2.091e — 3
11 | 271 | 4.305e — 4
12 | 2712 | 4.347¢ — 4

Table: Ll-error ¢, for wave-front tracking method between two subsequent
discretization meshes 27" and 2=¥~1, The comparison is done on a cartesian grid
with Az = 1073 and At = 0.5Az.
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The 1D case: comparison WFT vs FV [Goatin-Mimault, SISC 2013]

Wave-front tracking with Ap = 27'° and finite volumes with Az = 1/1500

T T T T i T
——— WFT
0.45- — — —Rusanov -1 [
— — — Godunov - 1
Xi H

0.4r

T
035+ f
|

0.3r

0251

0.2

0.151

_0.05 L L L L L L
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The 1D case: comparison WFT vs FV [Goatin-Mimault, SISC 2013]

Az Errg In(Errg)/In(Ax) | Errg In(Errr)/In(Ax)
1/50 7.24e —2 | —0.66 7.44e —2 | —0.67

1/100 | 4.56e —2 | —0.66 4.68e —2 | —0.67

1/250 | 2.49¢ —2 | —0.66 2.55e -2 | —0.67

1/500 | 1.52e —2 | —0.67 1.55e —2 | —0.67

1/1000 | 9.03e —3 | —0.68 9.12e — 2 | —0.68

1/1500 | 6.66e —3 | —0.69 6.62e —3 | —0.68

Table: L1-norm of the error for Godunov and Rusanov schemes compared to
wave-front tracking with Ap = 2710,
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Non-local fluxes in 2D

Multi-D integro-differential systems
U + divx F(t,x, U, U xn) =0

with t € R*, x € R, U(t,x) € RY, n(x) € R™*V

Theorem [Aggarwal-Colombo-Goatin, SINUM 2015]

For any initial datum U, € (L* N L N BV)(R?; RY), there exists a solution
UecC® (R+;L1(R2;R$)). Moreover, for all k € {1,..., N} and for all
t € R4, the following bounds hold:

U ®)llpoo gz mry < €Nt UG || oo g2 vy,
k _ k

||U (t)HLl(R2;R) - ”UO ”LI(RZ;R)’

TV(U*(t)) < M ETV(UE) + Ko (M1 = 1),

||U(t + T) - U(t)”Ll(RZ;]RN) S C(t) To
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Macroscopic models: summary
Strengths:

@ lower computational cost for large crowds

global description of spatio-temporal evolution

e mathematical tools for well-posedness and numerical approximation

suitable for posing control and optimization problems
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Macroscopic models: summary
Strengths:

@ lower computational cost for large crowds

global description of spatio-temporal evolution

e mathematical tools for well-posedness and numerical approximation

suitable for posing control and optimization problems

Weaknesses:
@ only for large crowds / specific situations
@ not all parameters have physical meaning

@ able to capture only some features of crowd dynamics
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Macroscopic models: summary
Strengths:

@ lower computational cost for large crowds

global description of spatio-temporal evolution

e mathematical tools for well-posedness and numerical approximation

suitable for posing control and optimization problems

Weaknesses:
@ only for large crowds / specific situations
@ not all parameters have physical meaning

@ able to capture only some features of crowd dynamics

Aspects to be addressed:
@ reproduce emerging phenomena observed in real situations
@ account for individual choices that may affect the whole system

e validation on empirical data
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Macroscopic models: summary
Strengths:

@ lower computational cost for large crowds

global description of spatio-temporal evolution

e mathematical tools for well-posedness and numerical approximation

suitable for posing control and optimization problems

Weaknesses:
@ only for large crowds / specific situations
@ not all parameters have physical meaning

@ able to capture only some features of crowd dynamics

Aspects to be addressed:
@ reproduce emerging phenomena observed in real situations
@ account for individual choices that may affect the whole system

e validation on empirical data

Thank you for your attention!
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