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Mathematical modeling of pedestrian motion: frameworks
Microscopic

individual agents
ODEs system
many parameters
low and high densities
comp. cost ∼ ped. number.

Macroscopic

continuous fluid
PDEs
few parameters
very high densities
analytical theory
comp. cost ∼ domain size
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Macroscopic models

Pedestrians as "thinking fluid"1

Averaged quantities:
ρ(t,x) pedestrians density
~v(t,x) mean velocity

Mass conservation{
∂tρ+ divx(ρ~v) = 0

ρ(0,x) = ρ0(x)

for x ∈ Ω ⊂ R2, t > 0

Two classes

1st order models: velocity given by a phenomenological
speed-density relation ~v = V (ρ)~ν

2nd order models: velocity given by a momentum balance equation

Density must stay non-negative and bounded: 0 ≤ ρ(t,x) ≤ ρmax

Different from fluid dynamics:
preferred direction
no conservation of momentum / energy
n� 6 · 1023

1R.L. Hughes, Transp. Res. B, 2002
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Continuum hypothesis

n� 6 · 1023 but ...

Brown University, Main Green, 08.21.2017

P. Goatin (Inria) Macroscopic models August 21-25, 2017 6 / 42



Macroscopic models Numerical tests Rigorous results

Speed-density relation

Speed function V (ρ):

decreasing function wrt density
V (0) = vmax free flow

V (ρmax) ' 0 congestion

Examples:

speed V (ρ) flux ρV (ρ)
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Desired direction of motion ~µ

Pedestrians:
seek the shortest route to destination
try to avoid high density regions

~ν = − ∇xφ

|∇xφ|

The potential φ : Ω→ R is given by the Eikonal equation{
|∇xφ| = C(t,x, ρ) in Ω

φ(t,x) = 0 for x ∈ Γoutflow

where C = C(t,x, ρ) ≥ 0 is the running cost

=⇒ the solution φ(t,x) represents the weighted distance of the position x
from the target Γoutflow
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Eikonal equation: level set curves for |∇xφ| = 1

In an empty space: potential is proportional to distance to destination
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The fastest route ...

... needs not to be the shortest!
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First order models
Hughes’ model1

~ν = − ∇xφ

|∇xφ|
s.t. |∇xφ| =

1

V (ρ)

minimize travel time avoiding high densities
CRITICISM: instantaneous global information on entire domain

Dynamic model with memory effect2

~ν = − ∇x(φ+ ωD)

|∇x(φ+ ωD)| s.t. |∇xφ| =
1

vmax
, D(ρ) =

1

v(ρ)
+ βρ2 discomfort

minimize travel time based on knowledge of the walking domain
temper the behavior locally to avoid high densities

Non-local flow:3

~v = V (ρ)

~ν − ε ∇(ρ ∗ η)√
1 + |∇(ρ ∗ η)|2

 with ~ν = − ∇xφ

|∇xφ|
s.t. |∇xφ| = 1

1R.L. Hughes, Transp. Res. B, 2002
2Y. Xia, S.C. Wong and C.-W. Shu, Physical Review E, 2009
3R.M. Colombo, Garavello and M. Lécureux-Mercier, M3AS, 2012
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Second order model

Momentum balance equation45

∂t(ρ~v) + divx(ρ~v ⊗ ~v) +∇xP (ρ) = ρ
V (ρ)~ν − ~v

τ

where

V (ρ) = vmaxe
−α
(

ρ
ρmax

)2
|∇xφ| = 1/V (ρ)

P (ρ) = p0ρ
γ , p0 > 0, γ > 1 internal pressure

τ response time

4Payne-Whitham, 1971
5Y.Q. Jiang, P. Zhang, S.C. Wong and R.X. Liu, Physica A, 2010
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Question

Can macroscopic models reproduce
characteristic features of crowd behavior?
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Numerical schemes used

Space meshes: unstructured triangular / cartesian

Eikonal equation: linear, finite element solver6 / fast-sweeping

First order models: Lax-Friedrichs

Second order models: explicit time integration with
advection-reaction splitting (HLL scheme)

Non-local models: dimensional splitting Lax-Friedrichs

6[Bornemann-Rasch, 2006]
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Corridor evacuation with two exits

Configuration at t = 0

Parameters choice:
ρ0 = 3ped/m2 initial density
ρmax = 10ped/m2 maximal density
vmax = 2m/s desired speed
τ = 0.61s relaxation time
p0 = 0.005ped1−γm2+γ/s2 pressure coefficient
γ = 2 adiabatic exponent
α = 7.5 density-speed coefficient
ε = 0.8 correction coefficient
η = [1− (x/r)2]3[1− (y/r)2]3 convolution kernel, with r = 15m
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Corridor evacuation with two exits

t = 20s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Corridor evacuation with two exits

t = 40s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local
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Corridor evacuation with two exits

t = 60s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Corridor evacuation with two exits

t = 80s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local

[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Room evacuation with obstacle

Configuration at t = 0

Parameters choice:
ρ0 = 3ped/m2 initial density
ρmax = 6ped/m2 maximal density
vmax = 2m/s desired speed
τ = 0.61s relaxation time
p0 = 0.005ped1−γm2+γ/s2 pressure coefficient
γ = 2 adiabatic exponent
α = 7.5 density-speed coefficient
ε = 0.8 correction coefficient
η = [1− (x/r)2]3[1− (y/r)2]3 convolution kernel, with r = 1.5m
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Room evacuation with obstacle
t = 2s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Room evacuation with obstacle
t = 5s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local
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Room evacuation with obstacle
t = 8s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Room evacuation with obstacle
t = 11s

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

non-local
[Twarogowska-Duvigneau-Goatin, Mimault-Goatin]
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Effect of the obstacle on the outflow

Time evolution of the total mass of pedestrians inside the room
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Ω

ρ(t, x)dx

non-local
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Second order model: stop-and-go waves

t=90 t=100 t=110 t=120

P (ρ) = 0.005ρ2, vmax = 2, ρmax = 7

Fig. Time evolution of density profile at x = 64 (left exit)
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Second order model: dependence on p0

P (ρ) = p0ρ
γ : total evacuation time optimal for p0 ∼ 0.5

with vmax = 2m/s, ρmax = 7ped/m2
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Second order model: dependence on vmax

Total evacuation time

Social force models7 show a minimum for vmax ' 1.4 m/s
=⇒ faster-is-slower effect8

Accounting for inter-pedestrian friction?

7D. Helbing, I. Farkas and T. Vicsek, Nature, 2000
8D.R. Parisi and C.O. Dorso, Physica A, 2007
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Second order model: dependence on vmax

Total mass evolution

with ρmax = 7ped/m2, γ = 2, p0 = 0.005
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Evacuation optimization: Braess’ paradox9 ?

Problem: clogging at exit

Can obstacles reduce the evacuation time?

9Braess, D. Über ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung,
12, pp. 258-268 (1968)
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Evacuation optimization: Braess’ paradox?

Time evolution of the total mass of pedestrians inside the room
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Non-local model: lane formation10

Two groups of pedestrians moving in opposite directions


∂tU

1 + div

(
c1U

1(1− U1)

((
1− ε1 U1∗µ√

1+‖U1∗µ‖2
)
~v1(x, y)−ε2 ∇U2∗µ√

1+‖∇U2∗µ‖2

))
= 0,

∂tU
2 + div

(
c2U

2(1− U2)

((
1− ε1 U2∗µ√

1+‖U2∗µ‖2
)
~v2(x, y)−ε2 ∇U1∗µ√

1+‖∇U1∗µ‖2

))
= 0.

where

c1 = c2 = 4 crowding factor
ε1 = 0.3, ε2 = 0.7,

can be derived as mean-field and hydrodynamic limit of microscopic model
[Göttlich-Klar-Tiwari, JEM 2015]

10R.M. Colombo and M. Mercier, Acta Mathematica Scientia, 2011
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Lane formation in bidirectional flows

[Aggarwal-Colombo-Goatin, SINUM 2015; Aggarwal-Goatin, BBMS 2016]
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Lane formation in crossing flows

[Aggarwal-Colombo-Goatin, SINUM 2015; Aggarwal-Goatin, BBMS 2016]
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The 1D case: statement of the problem

We consider the initial-boundary value problem

ρt −
(
ρ(1− ρ)

φx
|φx|

)
x

= 0

|φx| = c(ρ)

x ∈ Ω = ]− 1, 1[, t > 0

with initial density ρ(0, ·) = ρ0 ∈ BV(]0, 1[)
and absorbing boundary conditions

ρ(t,−1) = ρ(t, 1) = 0 (weak sense)
φ(t,−1) = φ(t, 1) = 0

General cost function c : [0, 1[ → [1,+∞[ smooth s.t. c(0) = 1 and c′(ρ) ≥ 0
(e.g. c(ρ) = 1/v(ρ))
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The 1D case: statement of the problem

The problem can be rewritten as

ρt −
(
sgn(x− ξ(t)) f(ρ)

)
x

= 0

where the turning point is given by∫ ξ(t)

−1

c (ρ(t, y)) dy =

∫ 1

ξ(t)

c (ρ(t, y)) dy

−→ the discontinuity point ξ = ξ(t) is not fixed a priori,
but depends non-locally on ρ
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The 1D case: available results

existence and uniqueness of Kruzkov’s solutions for an elliptic
regularization of the eikonal equation and c = 1/v
[DiFrancesco-Markowich-Pietschmann-Wolfram, JDE 2011]

Riemann solver at the turning point for c = 1/v
[Amadori-DiFrancesco, Acta Math. Sci. B 2012]

entropy condition and maximum principle
[ElKhatib-Goatin-Rosini, ZAMP 2012]

wave-front tracking algorithm and convergence of finite volume
schemes
[Goatin-Mimault, SISC 2013]

existence for data with small L∞ and TV norms and c = 1/v
[Amadori-Goatin-Rosini, JMAA 2013]

local version
[Carrillo-Martin-Wolfram, M3AS 2016]

extension to graphs
[Camilli-Festa-Tozza, NHM 2017]

P. Goatin (Inria) Macroscopic models August 21-25, 2017 33 / 42



Macroscopic models Numerical tests Rigorous results

The 1D case: entropy condition

Definition: entropy weak solution (ElKhatib-Goatin-Rosini, 2012)

ρ ∈ C0
(
R+;L1(Ω)

)
∩ BV (R+ × Ω; [0, 1]) s.t. for all k ∈ [0, 1] and

ψ ∈ C∞c (R× Ω;R+):

0 ≤
∫ +∞

0

∫ 1

−1

(|ρ− k|ψt + Φ(t, x, ρ, k)ψx) dx dt+

∫ 1

−1

|ρ0(x)− k|ψ(0, x) dx

+ sgn(k)

∫ +∞

0

(f (ρ(t, 1−))− f(k))ψ(t, 1) dt

+ sgn(k)

∫ +∞

0

(f (ρ(t,−1+))− f(k))ψ(t,−1) dt

+ 2

∫ +∞

0

f(k)ψ (t, ξ(t)) dt.

where Φ(t, x, ρ, k) = sgn(ρ− k) (F (t, x, ρ)− F (t, x, k))
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The 1D case: maximum principle

Proposition (ElKhatib-Goatin-Rosini, 2012)

Let ρ ∈ C0
(
R+;BV(Ω) ∩ L1(Ω)

)
be an entropy weak solution. Then

0 ≤ ρ(t, x) ≤ ‖ρ0‖L∞(Ω).

Characteristic speeds satisfy

f ′
(
ρ+(t)

)
≤ ξ̇(t), if ρ−(t) < ρ+(t),

−f ′
(
ρ−(t)

)
≥ ξ̇(t), if ρ−(t) > ρ+(t).
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The 1D case: wave-front tracking [Goatin-Mimault, SISC 2013]
Riemann-type initial data:

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

x

t

∆ρ = 2−4 ∆ρ = 2−10

Code freely available at:
http://www-sop.inria.fr/members/Paola.Goatin/wft.html
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The 1D case: wave-front tracking [Goatin-Mimault, SISC 2013]

Density profile at t = 0.8:
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∆ρ = 2−4 ∆ρ = 2−10
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The 1D case: numerical convergence of WFT [Goatin-Mimault, SISC 2013]

ν ∆ρ εν
5 2−5 4.280e− 2
6 2−6 2.164e− 2
7 2−7 6.141e− 3
8 2−8 5.048e− 3
9 2−9 1.755e− 3

10 2−10 2.091e− 3
11 2−11 4.305e− 4
12 2−12 4.347e− 4

Table: L1-error εν for wave-front tracking method between two subsequent
discretization meshes 2−ν and 2−ν−1. The comparison is done on a cartesian grid
with ∆x = 10−3 and ∆t = 0.5∆x.
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The 1D case: comparison WFT vs FV [Goatin-Mimault, SISC 2013]

Wave-front tracking with ∆ρ = 2−10 and finite volumes with ∆x = 1/1500
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The 1D case: comparison WFT vs FV [Goatin-Mimault, SISC 2013]

∆x ErrG ln(ErrG)/ ln(∆x) ErrR ln(ErrR)/ ln(∆x)

1/50 7.24e− 2 −0.66 7.44e− 2 −0.67
1/100 4.56e− 2 −0.66 4.68e− 2 −0.67
1/250 2.49e− 2 −0.66 2.55e− 2 −0.67
1/500 1.52e− 2 −0.67 1.55e− 2 −0.67
1/1000 9.03e− 3 −0.68 9.12e− 2 −0.68
1/1500 6.66e− 3 −0.69 6.62e− 3 −0.68

Table: L1-norm of the error for Godunov and Rusanov schemes compared to
wave-front tracking with ∆ρ = 2−10.
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Non-local fluxes in 2D

Multi-D integro-differential systems

∂tU + divxF (t,x, U, U ∗ η) = 0

with t ∈ R+, x ∈ Rd, U(t,x) ∈ RN , η(x) ∈ Rm×N

Theorem [Aggarwal-Colombo-Goatin, SINUM 2015]

For any initial datum Uo ∈ (L1 ∩ L∞ ∩BV)(R2;RN+ ), there exists a solution
U ∈ C0

(
R+;L1(R2;RN+ )

)
. Moreover, for all k ∈ {1, . . . , N} and for all

t ∈ R+, the following bounds hold:

‖U(t)‖L∞(R2;RN ) ≤ e
C t(1+‖Uo‖L1 ) ‖Uo‖L∞(R2;RN ),∥∥Uk(t)

∥∥
L1(R2;R)

=
∥∥Uko ∥∥L1(R2;R)

,

TV(Uk(t)) ≤ eK1 t TV(Uko ) +K2

(
eK1 t − 1

)
,

‖U(t+ τ)− U(t)‖L1(R2;RN ) ≤ C(t) τ.
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Macroscopic models: summary
Strengths:

lower computational cost for large crowds
global description of spatio-temporal evolution
mathematical tools for well-posedness and numerical approximation
suitable for posing control and optimization problems

Weaknesses:

only for large crowds / specific situations
not all parameters have physical meaning
able to capture only some features of crowd dynamics

Aspects to be addressed:

reproduce emerging phenomena observed in real situations
account for individual choices that may affect the whole system
validation on empirical data

Thank you for your attention!
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